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bstract

This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell
SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kWel SOFC system was installed at the Canadian
entre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance
ata were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back
ropagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed
nd applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack
urrent, stack voltage, etc.

The study revealed that both ANN and ANFIS models’ predictions agreed well with variety of experimental data sets representing steady-state,
tart-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant
arameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models’

ccuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of
xisting and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration
ystem’s performance could be modelled with minimum time demand and with a high degree of accuracy.
rown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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. Introduction

Microgeneration is defined as a notion of simultaneous gener-
tion of both heat and power in an individual dwelling. It is also
nown as micro combined heat and power generation (mCHP).
nstalled at the point of use mCHP plants will generate electric-
ty and heat with high efficiency and low greenhouse emissions
nd are a viable alternative to central power generation stations.
urrently, there are several microgeneration technologies under

evelopment such as fuel cells, stirling engines, IC engines,
tc. However, SOFCs are starting to emerge as one of the most
romising high efficiency/clean-fuel energy technology as most
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f the developed SOFC systems are suitable for both off-grid
nd grid connected applications. In either case, heat produced
uring the power generation process can be recovered and uti-
ized to satisfy space and water heating load of the house during
inter and to provide thermal cooling in the summer.
A combined heat and power 5 kWel SOFC was installed

nd tested at the Canadian Centre for Housing Technology
CCHT) during 2005 winter season. The project objectives were
o demonstrate the first SOFC mCHP residential installation in
anada and to examine the SOFC/building integration issues

uch as HVAC interface, control strategies, grid connection, sys-
em ability to follow the load, optimal SOFC size, etc. In addition

o the testing, computer models were developed to optimize the
OFC and balance of plant (BOP) operations and to investigate
nd to predict the SOFC performance under a variety of external
onditions.

. All rights reserved.
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Nomenclature

e experimental value
I stack current (A)
MRE mean relative error (%)
N number of data points
p predicted value
P stack power (W)
RMSE root mean square error
V stack voltage (V)
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i index for data points

It is well known that SOFC performance is directly related to
he multi-physic processes taking place within the fuel cell stack.
lectrochemical reactions, chemical reactions, mass and charge

ransport as well as heat transfer occur all at the same time and
re tightly coupled [1–3]. In this complex environment mathe-
atical models are a very useful tool and they have been applied

o investigate and to improve the fuel cell stack performance for
any years. However, most of the SOFC models found in the

iterature are physically based mathematical, numerical or com-
utational fluid dynamic models [1–13]. Most of these models
re fairly complex and it is time consuming to develop and build
s in most cases the required input information is either incom-
lete or insufficient. It is due to these reasons that data driven
daptive models, such as neural network and fuzzy logic models,
ere considered in this study.
Artificial neural networks (ANN) have a history of some six

ecades but have found solid applications only in the past 20
ears [14]. ANN is a type of artificial intelligence that mimics
he behaviour of human brain and is famous for its robustness
adaptability) due to the use of a generalization technique instead
f memorization. In recent years ANN has been successfully
pplied for modeling of different fuel cell systems [15,16]. How-
ver, in these two studies, ANN models were developed and
rained with established baseline design points [15] or with data
enerated by a validated numerical model [16] but not with real
ife experimental data.

Beside the ANN technique, there is a rapid growth in the num-
er and variety of applications of fuzzy logic. Among various
ombinations of methodologies in “soft” computing [17], the
ne that has highest visibility at this juncture is that of fuzzy logic
nd neurocomputing, leading to so-called neuro-fuzzy systems.
ithin fuzzy logic, such systems play a particularly important

ole in the induction of rules from observations. One effective
ethod developed by Dr. Jang ([18–20]) for this purpose is

alled ANFIS (Adaptive Neuro-Fuzzy Inference System) and
he ANFIS technique has been already applied in modeling and
ontrol of PEMFC systems [21].
The ANN and ANFIS models have the unique advantage
hat no clear relationship between the input and output variables
eeds to exist before the model is applied since the relationship
s identified through a self-learning process. By utilising data
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amples from experiments, both ANN and ANFIS models can
e applied to solve problems with no (or with too complex)
lgorithmic solutions, or in cases where the input information is
ncomplete or uncertain. The ability to learn by examples makes
NN and ANFIS models more flexible and powerful than the
ther traditional modelling methods.

This paper describes ANN and ANFIS models developed
or the SOFC unit installed as a mCHP system at CCHT and
heir applicability for predicting SOFC power generation per-
ormance (stack current and voltage).

. SOFC installation and data monitoring

.1. SOFC installation at CCHT

Canadian Centre for Housing Technology’s (CCHT) research
acility consists of two identical 2-storey research houses—the
xperimental Research House and the Control Research House.
oth houses are built to the highest R-2000 Canadian standard
nd feature identical simulated occupancies. The houses are
ired with more than 500 sensors and are extensively monitored

or energy performance and thermal comfort [22]. The Experi-
ental House is used for testing where innovative energy saving

omponents and systems are installed. The resulting changes in
he energy performance of the Experimental House are assessed
elative to the Control House.

A SOFC system with capacity of 5 kWel and 5 kWth was
ested at CCHT during 2005 winter heating season. The fuel
ell was installed in the Experimental Research House and con-
ected to the house domestic hot water and forced air space
eating system. Modifications were made to the house electri-
al wiring in order to accept the system and to provide means
f importing/exporting power to the electricity grid [22]. The
uel cell stack was a tubular design with an operating temper-
ture of 1000 ◦C. The fuel cell generated 3.5 kWel ac output
ith 85% fuel utilization efficiency and internal reforming of

he natural gas. A SOFC simplified flow diagram is shown in
ig. 1. The auxiliary burner inside the SOFC unit was fired
t the start-up and used to maintain the thermal conditions of
he fuel cell stack during steady-state operation. The thermal
nergy carried out by the exhaust stream was utilized through
he Balance of plant heat utilization module. The BOP provided
hermal storage for the excess heat from the cell and an addi-
ional backup or top-up burner installed in the thermal storage
as used as a supplementary heat source in instances when the

uel cell was not able to satisfy the house entire thermal require-
ents. The generated dc power by the fuel cell was converted to

c and supplied to the house with excess power exported to the
rid.

.2. Data monitoring and collection

Data acquisition and control systems were developed and

nstalled to collect data internal for the cell and from the exter-
al electrical and thermal utilization loops. More than 50 sensors
ere scanned every 10 s averaged and data recorded every
inute. Six data were used to form one representative 1 min
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Fig. 1. Schematic flow diagram of s

ata to avoid any deviations due to random fluctuations that
ccur some times when only one instantaneous measurement is
aken every minute.

A control strategy (independent of the one employed by the
uel cell alone) was implemented to manage the interaction
etween the thermal energy storage and space and water heating
ystems in the house [22]. Among the set of available data the
ollowing parameters were considered important in the context
f this study:

FC stack fuel (natural gas) consumption
FC stack current
FC stack voltage
FC stack temperature
FC stack air flow and inlet temperature
FC stack exhaust temperature
Burner fuel (natural gas) consumption
Burner combustion temperature
Burner air flow
Burner air inlet temperature

The above parameters were chosen based on preliminary
xpert technical analysis of the FC system operation and data
vailability. However, there were some other parameters influ-
ncing the fuel cell power output but they were either not
ccessible for measurements during the FC testing or their
mportance was at a subsystems’ level only.
Two experiments were conducted at CCHT during the
005 heating season—26 days and 46 days respectively. The
ata sets covered all three modes of SOFC operation—start-
p, steady-state and shut-down. The collected data provided

s
i
b
t

xide fuel cell unit tested at CCHT.

xtensive information for the fuel cell performance and
as used for training and testing of ANN and ANFIS
odels.

. Artificial neural network (ANN) model

Artificial neural network is a type of artificial intelligence
echnique that mimics the behaviour of human brain. It can
pproximate a nonlinear relationship between the input and out-
ut variables of nonlinear, complex systems without requiring
xplicit mathematical representations. The ANN architecture
sually consists of three parts: an input layer, hidden layers and
n output layer. Neurons in one layer are connected to all the
eurons of previous and subsequent layers. Each connection
etween two neurons is associated with an adaptable synaptic
eight. Using a suitable learning method, the network is trained

o perform a particular function by adjusting the weights and
iases. The training process continues until the error between
he network output and the desired target falls below a predeter-

ined tolerance or the maximum number of iterations (epochs)
s reached.

Fig. 2 shows the architecture of the developed neural network
odel. The ANN network has an input layer with 8 inputs, 1 hid-

en layer with 10 neurons and an output layer with 2 outputs:
OFC stack current and voltage. The system is fully cross-
onnected. A number of ANN networks consisting of 3 and 4
ayers with 5, 10, 15, 20 neurons in the hidden layers have been

imulated. The final ANN structure (3 layers and 10 neurons
n the hidden layer) was chosen as the one that gave compara-
le results (±2%) with the others and used less computational
ime.
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ig. 2. Neural network architecture used in ANN8 (8 inputs) SOFC Model.

MATLAB® (The MathWorks Inc.) Neural Networks Tool-
ox was used to build ANN models. The hyperbolic tangent
igmoid transfer function (“tansig”) was used in the hidden
ayer and linear transfer function (“purelin”) was applied in
he output layer. The two-layer sigmoid/linear network usu-
lly can represent any functional relationship between inputs
nd outputs if the sigmoid layer has enough neurons [14]. The
onlinear transfer function in the hidden layer allows the net-
ork to learn nonlinear and linear relationships between input

nd output vectors and the linear output layer lets the network
roduce values outside the range −1 to + 1. The weights and
iases were initialized using “init” function which calculates
he weight and bias values using the Nguyen–Widrow initial-
zation method. Lavenberg–Marquart backpropagation training
lgorithms (“trainlm”) was used as a training function to update
eight and bias values, as it is the fastest training algorithm

or networks of moderate size although it can require additional
emory. Memory problems did not occur during the simulations

or all developed ANN models.
The available data from the CCHT experiments were divided

nto two sets: training and testing data sets. The first data set
as used for training the network. The second set, which was
ot included in the training process, was used to verify the gen-
ralization capability of the network model. The selection of
raining and testing data is discussed in more detail in Section 6.

. Adaptive neuro-fuzzy inference system (ANFIS)
odel

The basic idea behind the neuro-adaptive learning techniques
s very simple. These techniques provide a method for the fuzzy

odelling procedure to learn about the data set, and to compute
embership function parameters that will best suit the associ-

ted fuzzy inference system (FIS) for given input/output set. The
NFIS learning method works similarly to the neural networks
ne [18–20].

Fuzzy Logic Toolbox of MATLAB was used to build an

NFIS model and to predict the SOFC stack current and
oltage. The model generates an initial FIS for ANFIS train-
ng by first implementing subtractive clustering on the given
nput/output data. The function “genfis2” was employed to

i
p
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ccomplish this procedure by extracting a set of rules that models
he data behaviour. The “radii” parameter required by the “gen-
s2”function is a vector that specifies a cluster center’s range of

nfluence in each of the data dimensions, assuming the data falls
ithin a unit hyperbox [23]. Its value was 0.5, both for the stack

urrent and voltage models. The parameters associated with the
nitial membership functions are then tuned (adjusted) through
he learning ANFIS process by applying a combination of the
east squares method and the back propagation gradient decent

ethod.
It should be noted that there are some constraints of the “anfis”

unction. Unlike ANN, the “anfis” function only supports sin-
le output, which means an ANFIS model has to be developed
nd trained for the current and voltage respectively. The “gen-
s2”function applies all training data to identify coefficients of
utput equations. These constraints of the “anfis” and “genfis2”
unctions may increase the model computation time compared
o the ANN models.

The same data set was used for ANN training and for ANFIS
earning process. A separate data set, not included in the training
et, was employed for verifying the ANFIS model generalization
apabilities.

. Criteria for models’ performance evaluation

Models’ performance can be evaluated through different cri-
eria. In this study root mean square error and mean relative error
ere chosen for evaluation purposes.
The root mean square error, RMSE, is calculated by:

MSE =
√√√√ 1

N

N∑
i=1

(ei − pi)2

here e is actual value from experiments, p is predicted value
y models and N is the number of data points.

The mean relative error, MRE, is given by the following:

RE (%) = 1

N

∑N

i=1

∣∣∣∣
pi − ei

ei

× 100

∣∣∣∣

. Input/output variables and training/testing data sets

A number of different experiments were conducted at CCHT
o examine the SOFC system performance. However, for the pur-
ose of this study two data sets were extracted from the data base
epresenting two different tests performed with the mCHP sys-
em. The first data set contains 21,000 data points and was used
or training purposes while the second one contains 53,000 data
oints and was used for testing and verification of the developed
NN and ANFIS models.

.1. Model input and output variables
The SOFC system preliminary analysis defined a cluster of
nput parameters that have an impact on the fuel cell system
ower output (voltage and current) level:
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Table 1
Linear regression coefficients for predicting stack current and voltage

Coefficients

Stack current, I Stack voltage, V

Stack fuel flow 24.4469 −0.0920
Stack temperature 0.5680 −0.0018
Stack air flow 0.0184 0.0026
Stack air inlet temperature 0.1477 −0.0509
Burner fuel flow 0.4009 0.1241
Burner combustion temperature −0.0063 0.0011
Bruner air flow 0.0128 −0.0202
B
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. Stack fuel (natural gas) flow

. Stack temperature

. Stack air flow

. Stack air inlet temperature

. Burner fuel (natural gas) flow

. Burner combustion temperature

. Burner air flow

. Burner air inlet temperature

Two rounds of simulations were performed with ANN and
NFIS models. In the first round all eight variables were used

s inputs to the models. Then backward stepwise multiple lin-
ar regression (“stepwise”) was applied to identify statistically
ignificant variables. It started with all terms in the model and
emoves the least significant terms until the results were still
atisfied with all the remaining terms. An important assumption
ehind the method is that some input variables in a multi-
le regression do not have important explanatory effect on the
esponse. It is a convenient simplification to keep only the
tatistically significant terms in the model [24]. Before the step-
ise multiple regression was applied the initial number of 8

nput parameters was increased to 16 as the new parameters
ntered into the regression were presented as nonlinear func-
ions of initial set of 8 parameters such as X2

1, X1 × X2, etc.
his transformed the stepwise regression to one that corre-

ponds to the nonlinear structure of ANN and ANFIS models.
ased on the regression findings and follow up analysis of

he impact of the linear and nonlinear input parameters on the
utputs, the number of input parameters was reduced to four

p
i
r
o

Fig. 3. Measured stack fuel flow, burner fuel flow, stack temperatur
urner air inlet temperature 0.0008 −0.0020

n the second round of simulations. Table 1 shows the mul-
iple regression coefficients for predicting stack current and
oltage.

. Stack fuel (natural gas) flow

. Stack temperature

. Stack air inlet temperature

. Burner fuel (natural gas) flow

Fig. 3 illustrates the measured values of the above four input
arameters from both experiments. The data points in Exper-

ment 1 and 2 are continuous in terms of time with 1-min
esolution and the vertical line in the graph separates the data
btained from each experiment.

e and stack air inlet temperature during Experiments 1 and 2.
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Table 2
Training and testing data in various ANN and ANFIS models

ANN and ANFIS models Training data Testing data

M1: start-up period Experiment 1 Experiment 2
M2: steady operation period Experiment 1 Experiment 2
M
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M

3: entire experiment period (start-up
and steady operation periods)

Experiment 1 Experiment 2

.2. Training and testing data sets

Two tests were conducted at CCHT to generate data
eeded for modeling purposes. All three modes of SOFC
perations—start-up, steady-state and shut-down were covered.
n this study the time periods before the system reached its capac-
ty are called start-up periods and the time periods when the
utput power is at its controlled or design capacity are called
eady-state periods.

Three distinct models were developed for SOFC prediction
y applying ANN and ANFIS techniques. The first one was
ntended to model the SOFC start-up periods and the second one
as intended for periods when the SOFC was in steady-state
peration. A third integrated model was developed to predict
oth start-up and steady-state SOFC operations. Data used for
odels’ training and testing are listed in Table 2.

. Results and discussions
Total of 12 ANN and ANFIS models, with 8 and four 4
nput variables, were developed and tested. Models’ perfor-

ance was evaluated by root mean square (RMSE) and mean

r
i
m
d

ig. 4. Evaluation of model performance: root mean square (RMSE) and mean relati
3 refer to model names described in Table 2.
r Sources 170 (2007) 122–129 127

elative error (MRE) for the entire data set (including training
nd testing data). Fig. 4 summarised the evaluation results both
or ANN and ANFIS models. A comparison between the pre-
icted and measured data for ANFIS4-M3 models (4 inputs,
overing entire experimental period) are shown in Figs. 5 and 6.
he first subplot in these two figures shows the predicted and
easured current/voltage; the second one shows the difference

etween the predicted and measured values and the third one
hows the relative error (%) of the model. Figs. 7 and 8 illustrate
he predicted versus experimental SOFC current and voltage
espectively.

Results in Fig. 4 show that for all ANN and ANFIS models
he RMSE values, for stack current and stack voltage, were small
elative to their target values (experimental values). The mean
elative errors (MRE) were less than 2% for all models. As shown
n Figs. 5 and 6, the relative errors of the two output parameters
ere all within ± 10% and within ± 5% for majority of data
oints.

The results indicate that both ANN and ANFIS models can
ive good predictions of the stack current and voltage. However,
he ANFIS model performs better than ANN model in predicting
he FC current. In some instances the ANN performed better than
NFIS in predicting the FC voltage which is mainly due to less
eviation of the voltage data which diminished the advantage of
uzzy logic part of the ANFIS model.

It also illustrates that models with reduced number of inputs
ad the same degree of accuracy as initial detailed model. The

esults obtained from the third model (M3) confirmed that there
s no need of separate models for various operating stages as one

odel can simulate all operational modes of SOFC with high
egree of accuracy.

ve error (MRE) of ANN and ANFIS models with 8 and 4 inputs. M1, M2 and
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Fig. 5. Comparison of predicted and me

The trained ANN and ANFIS models applied to the second
ata set showed that models’ predictions were in line with the test
ata even without retraining the models. However, further verifi-
ation of the generalization capability of these models should be
erformed when more experimental data from a fuel cell system
ith a modulating power output become available for the same

r different SOFC units.

Evaluation results showed that, with same number of inputs
nd data points, the required computer computational time
or ANN model was approximately 20% of the required

ig. 6. Comparison of predicted and measured SOFC voltage—ANFIS4 (M3)
odel.

f
c
o
A

F

SOFC current—ANFIS4 (M3) model.

y ANFIS model. It is mainly due to the “genfis2” func-
ion which is inevitably slow since it applies all training
ata to identify the coefficients of the output equations, but
lso due to the “anfis” function which only supports single
utput.

The evaluation results also showed that, by excluding the
our least statistically significant variables, the computation time
ould be reduced by more than 30% compared to the same type

f model with all eight input variables, e.g. ANN4 (M3) versus
NN8 (M3).

ig. 7. Predicted versus measured SOFC current—ANFIS4 (M3) model.
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[22] E. Entchev, J. Gusdorf, M. Swinton, M. Bell, F. Szadkowski, W. Kalbfleisch,
ig. 8. Predicted versus measured SOFC voltage—ANFIS4 (M3) model.

. Conclusions

Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy
nference System (ANFIS) techniques were used to predict per-
ormance parameters stack current and voltage of a residential
OFC system installed at the Canadian Centre for Housing
echnology.

Three models (M1, M2, M3) based on ANN and ANFIS
echniques were developed for predicting the SOFC operation.
y applying multiple regression method, four important input
ariables were identified with significant contribution for SOFC
tack current and voltage generation. The evaluation results
ndicated that the integrated (M3) model was able to predict
ith a good accuracy the SOFC performance over a range of
ifferent operational conditions. All ANN and ANFIS models
eveloped and evaluated in this study had a maximum relative
rror of ± 10% (with ± 5% for majority of data points) and mean
elative error of less than 2% for all output parameters. Further-
ore, the root mean square errors were small relative to their

arget values (experimental values).
The comparison of computational time revealed that running

ime for ANN model was five times shorter than for ANFIS
odel (with same number of inputs and data points). By reduc-

ng the number of input parameters the computation time was
educed by more than 30% without affecting models’ accuracy.

Based on the results from this study it can be concluded that
y using the ANN and ANFIS techniques, SOFC system can
e modelled with relative high accuracy. The ANN and ANFIS
bility to learn by examples makes the developed models a good

ddition to the existing modelling techniques. The ANN and
NFIS models can be applied either separately as stand-alone
odules or as an addition to the existing conventional mathe-
atical models. The fuel cells are still under development and

[
[

r Sources 170 (2007) 122–129 129

here is a constant need for adjustment of the already developed
odels to answer the challenges from the FC industry. In com-

arison to the conventional models the ANN and ANFIS models
re able to predict and optimize system performance faster and
eliver better results in many instances. The developed models
ould be applied as part of fuzzy and/or fuzzy/NNT controllers
o optimize the complex fuel cell operations in the field.
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